Algorithms to Process and Measure Biometric Information Content in Low Quality Face and Iris Images
نویسنده
چکیده
.............................................................................................................................. 2 Acknowledgments............................................................................................................... 4 1 Chapter 1................................................................................................................... 14 Introduction....................................................................................................................... 14 1.1 Thesis Objectives .............................................................................................. 14 1.2 Thesis contributions .......................................................................................... 16 1.3 Thesis outline .................................................................................................... 19 1.4 Image databases ................................................................................................ 21 2 Chapter 2................................................................................................................... 23 Biometrics review ............................................................................................................. 23 2.1 Biometrics technology ...................................................................................... 23 2.2 Multimodal biometric systems.......................................................................... 28 2.3 Properties of Biometrics ................................................................................... 29 2.4 Classification of Biometric System .................................................................. 31 2.5 Biometric Sample Quality Measures ................................................................ 34 2.6 Face recognition................................................................................................ 35 2.7 Face tracking algorithms................................................................................... 39 2.7.1 Knowledge-Based Classifiers ................................................................... 40 2.7.2 Learning-Based Classifiers ....................................................................... 45 2.7.3 Motion estimation ..................................................................................... 47 2.8 Iris Recognition................................................................................................. 49 2.8.1 Iris structure .............................................................................................. 52 2.8.2 Iris texture pattern and colors ................................................................... 52 2.8.3 Imaging Systems....................................................................................... 55 2.8.4 Iris Localization and Segmentation .......................................................... 57 2.8.5 Size-invariant Unwrapping and Representation ....................................... 64 2.8.6 Feature Extraction..................................................................................... 67 2.8.7 Matching Algorithms and Distance Measure ........................................... 73 2.8.8 Evaluation Metrics .................................................................................... 75 2.8.9 Image Database and Open Source Software............................................. 80 2.9 Non-Cooperative Iris Recognition.................................................................... 81 2.10 Summary........................................................................................................... 84 3 Chapter 3................................................................................................................... 86 Using infrared illumination to improve eye & face tracking in low quality video images ........................................................................................................................................... 86 3.
منابع مشابه
Improving verification accuracy by synthesis of locally enhanced biometric images and deformable model
In this paper, we propose a 2-stage preprocessing framework which consists of image enhancement and deformation techniques to increase the verification performance of image-based biometric systems. In the preprocessing framework, first the quality of biometric image is enhanced and then a deformation model is applied to minimize the variation between the two images to be matched. The proposed S...
متن کاملRobust memory-efficient data level information fusion of multi-modal biometric images
This paper presents a novel multi-level wavelet based fusion algorithm that combines information from fingerprint, face, iris, and signature images of an individual into a single composite image. The proposed approach reduces the memory size, increases the recognition accuracy using multimodal biometric features, and withstands common attacks such as smoothing, cropping, JPEG 2000, and filterin...
متن کاملRobust Iris Recognition in Unconstrained Environments
A biometric system provides automatic identification of an individual based on a unique feature or characteristic possessed by him/her. Iris recognition (IR) is known to be the most reliable and accurate biometric identification system. The iris recognition system (IRS) consists of an automatic segmentation mechanism which is based on the Hough transform (HT). This paper presents a robust IRS i...
متن کاملFake Biometric System For Fingerprint, Iris, and face using QDA and SIFT
Security is the major concern for today’s scenario. A high level industry uses passwords like thumb, face, voice, iris, etc. So many security systems are available, but not reliable. The biometric details are very useful and essential one of the developing security world, but the biometric details are made fake by the hackers. There are so many methods used to authentication the biometric detai...
متن کاملAn Efficient Biometric Multimodal Face, Iris and Finger Fake Detection using an Adaptive Neuro Fuzzy Inference System (ANFIS)
The face, iris and finger print are among the most promising biometric authentication that can precisely identify and analysis a person as their unique textures can be quickly extracted during the recognition process. This biometric detection and authentication often deals with non-ideal scenarios such as blurred images, off-angles, reflections, expression changes. These precincts imposed by un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011